American Classic Car Club Auckland
  • Home
  • Events
  • News
  • Gallery
    • Toy Run - 2 December 2019
    • Christmas picnic in the park - 1 December 2019
    • Tulip Run - 17 November 2019
    • Aroha Cruise-In Saturday October 5th 2019
    • Ross Tebbs Shed Raid - Sunday September 22nd 2019
    • Kaiaua Fish & Chip run - 18 August 2019
    • Clifton Cove Toy Museum - 28 July 2019
    • Mid-winter Xmas - 30 June 2019
    • Ross Bros. Muscle Garage - 18 May 2019
    • Waiau Pa Hop/Hedges Estate - 13 April 2019
    • Chucks Restoration visit - 24 March 2019
    • Rebel Roundup - 16 February 2019
    • Waipu Car & Bike Show - 10 February 2019
    • Ellerslie Classic Car Show - 10 February 2019
    • Kumeu Classic Car & Hot Rod Festival - 19 January 2019
    • Black Swamp Rod Run - 5 January 2019
    • Toy Run Mk.2 - 10 December 2018
    • Xmas picnic in the Park - 9 December 2018
  • Cruisepaper
  • Join us
  • Contact
  • Members only
    • Members contact details
    • Club apparel & badges

1950s Car Had An Extra Wheel To Help With Parking

3/12/2019

0 Comments

 
0 Comments

King of the Tailfin: Virgil Exner’s Project 613

28/11/2019

0 Comments

 
Picture
Chrysler styling chief Virgil Exner rocked the Motor City to its core with the Chrysler Forward Look line for 1957. But behind the scenes, he had even bigger ideas. 
The career of an auto designer follows a familiar arc, many will say. As the years go by, their work tends to become more refined and restrained. Not Virgil Exner, vice president of design at the Chrysler Corporation through the ’50s and the architect of the company’s Forward Look. As his career advanced, his designs only became more daring and audacious. His 1957 Chrysler family of cars rocked the Detroit auto industry to its core with their low, sleek lines and bold tail fins, throwing GM and Ford back on their heels. And while it never saw production, back within the walls of the Chrysler styling studios, Exner had an even bolder stroke held in reserve: the Chrysler 300C Ghia, also known as Project 613.
Picture
​The color rendering above and full-size clay model below show the essential elements of Project 613: It’s the car that became the production 1957 Chrysler 300C, more or less, but with some obvious revisions.  First, there’s a radically faired-in application of one of Exner’s favorite gimmicks, the faux continental spare tire. (The tack-on tire cover on production Chrysler products was labeled by critics the “washing machine lid” or “toilet seat.”) Next, Project 613 sports the biggest, tallest, most spectacular tail fins ever seen on a Chrysler product, partially blocking the rear side glass. Virgil Exner, unleashed.
Picture
​Hardcore Mopar enthusiasts will notice that the Project 613 hardtop version uses the Plymouth/Dodge greenhouse with its slimmer C pillars instead of the bulkier roof structure found on Chysler production models that year. A fully functional, running and driving prototype, Project 613 reportedly rode on a 122-inch wheelbase, four inches shorter than the production ’57 Chrysler.
Picture
The body for the one-off  was constructed by Carrozzeria Ghia of Turin, Chrysler’s go-to Italian coachbuilder for show cars and other special projects. Upon its completion in mid-early 1956, Project 613 became Exner’s daily transportation—photos show it parked in the driveway of his home in the Detroit suburbs, and it was said to be one of his favorite cars. According to Exner’s son, Virgil Exner Jr, the car was then known as the “Chrysler 500.”
The eventual fate of Exner’s  fabulously finned Mopar is unknown (to us, anyway) but fortunately, the story doesn’t end here. Chrysler enthusiast Édouard Rodrigue of Québec constructed a faithful replica of the Ghia prototype using a ’57 Plymouth platform and ’57 Chrysler sheet metal components. The recreation took six years, is powered by a 392 CID Chrysler hemi V8 in 300C tune, and, according to Mr. Rodrigue, is “95 percent identical to the original prototype.” 
​Photo below courtesy of Lemire Media. 

Picture
Article courtesy of Mac's Motor City Garage.
0 Comments

Market Watch: 1964 Ford Thunderbolt

16/11/2019

0 Comments

 
Picture
This for-real, freshly restored 1964 Ford factory lightweight drag car will be crossing the block at the Barrett-Jackson Scottsdale auction on January 11, 2020.

​The Motor City’s automakers produced a fascinating variety of low-production, factory-lightweight race cars for drag strip competition throughout the 1960s, but the best known of them all might be the 427-powered Ford Fairlane sedans specially constructed for the ’64 season. That may be due in part to the memorable name Ford chose to give these special cars: Thunderbolt.
Picture
​The Thunderbolt headed for B-J Scottsdale  is reportedly number 35 of the 100 cars built for Ford by Dearborn Steel Tubing, a Dearborn contractor just a stone’s throw from Ford world headquarters. (The company also built 427-powered Comets, Falcons, and Mustangs that year for a production total of 127.) The only visible non-stock items on this example are the five-spoke cast racing wheels, an appropriate, period-correct addition. Except for the first 11 cars, which were finished in Vintage Burgundy, all Thunderbolts originally wore Wimbledon White paint like this one.
Dearborn Steel Tubing was operated by Andy Hotton, a gearhead entrepreneur with close ties to Ford’s racing programs. To create Thunderbolts from production Fairlane two-door sedans, his outfit performed a long list of modifications, guided by a prototype developed by Ford factory racer Dick Brannan. They replaced the front fenders, hood, and deck lid with lightweight factory pieces, partially gutted the interiors, modified the rear suspension with big, beefy traction bars, and rearranged the front suspension to allow the big 427 High Riser V8 to fit in the engine compartment, among other changes.
Picture
​Originally developed for NASCAR, the 427 High-Riser V8 sported a radical high-flow intake manifold and cylinder heads, generating somewhere north of 500 hp. Note the classic Thunderbolt fresh air system with its cast aluminum airbox for the dual Holley four-barrel carbs, fed by a pair of giant black hoses routed through the (former) inner headlamp bezels. The tall intake setup required an equally tall blister in the hood for clearance, just visible in the photo above—the trademark Thunderbolt teardrop hood bubble.
Picture
​Finished in Medium Beige Poly paint and trim, Thunderbolt cabins featured lightweight Bostrom truck seats, thin rubber floor mats, and an 8,000 Rotunda tach bolted to the top of the instrument panel. All Thunderbolts also sported a metal tag riveted to the inside of the glove box door warning that the vehicle was intended for competition use only. Forty-nine of the Thunderbolts were built with four-speed transmissions for NHRA Super/Stock competition, while 51 were produced with modified Lincoln Turbo-Drive automatics for the Super/Stock Automatic category.
Campaigned by Mefford Ford, a Springfield, Ohio dealer with an active racing program that included USAC star Jack Bowsher, this particular Thunderbolt was not terribly successful, and at some point the troublesome automatic transmission was swapped out in favor of a four-speed. While Thunderbolts were capable of mid-11 second times at more than 120 mph, this one reportedly never met its potential, and that may well be what saved it. Instead of being campaigned to death like so many race cars, it was tucked away in storage for decades, then treated to a complete restoration, emerging in 2017 to collect several major show awards. Barrett-Jackson has not declared a price estimate for the upcoming no-reserve sale in January, but authentically restored Thunderbolts typically sell in the multiple six-figure range. Photos by Barrett-Jackson.
Picture
Article courtesy of Mac's Motor City Garage.
0 Comments

Let’s Break Down Some Brake Myths, Shall We?

30/10/2019

0 Comments

 
Picture

The automotive industry is absolutely packed full of myths, misconceptions, and sometimes even lies. While some are in the realm of marketing, and some are in the realm of maintenance, all bug the absolute crap out of me. I could rant for hours on this stuff, so I decided to curtail my rage to just one segment of the industry for this article, and tackle three myths within the wide category of brakes. 

OK… *Takes deep breath*. Let’s get into this.

Marketing Gripes – What Does “Better” Mean?

Brakes are one of those weird areas where “better” might not be “better” for you. More expensive doesn’t necessarily mean an improvement, and buying brake pads above what you need could make your life miserable, or even be dangerous in extreme cases. Unfortunately, marketing around the brakes industry doesn’t really reflect this fact, and the layman could be forgiven for wanting to spend a little extra to get a better brake pad that might be safer, last longer, or create less dust…, just to end up with the exact opposite of what he wanted, and be charged a premium in the process.

So let’s brake down (pun intended) what you actually need, and when not to overpay:

​
If the marketing copy is to be believed, the more you pay, the better the brake pad is. Well that’s the problem. Better for what? For who? Let’s say you just picked up a new Mustang GT. This is your daily and weekend fun car to take to the canyons every once in a while, and maybe the occasional track day or autocross. You’re going to want some good pads that can handle high heat without fading out to nothing, right? Nice! A set of $250 racing pads would do great on the track!
But what about the other 98% of the time you’re driving your car? Well that’s where we get into my issue here. A high performance track pad is going to be great at what it does, but as a side effect of that, they are often loud, create a lot of dust, have poor bite when cold, and tend to wear rotors more quickly. As a daily driver, those sound more like headaches than advantages to me. Of course if you stick with stock or OEM equivalent pads, then you’ll have the opposite problem of them fading quickly and glazing when you actually put some real heat into them. That’s where a good balance needs to be struck. Something like the EBC Greens or Yellows ride this line well.

“Better” isn’t necessarily always “better.”

​Drilled VS Slotted VS Plain and Boring

Picture
Drilled and slotted rotors look awesome. They just do. They look like the Jason Statham of brake rotors, for serious drivers who want to do serious things with their cars. The difference is J. Stathe doesn’t crack under pressure, but drilled rotors do. Want an easy way to prove they’re more for looks than actual performance? Google around and look at any real race car’s brakes. IMSA, Nascar, F1, WRC, you name it. You’ll see slotted rotors sometimes (especially in rally), but never drilled in anything that is competing at a high level.
So why do these serious performance cars like the GT350R, or even Porsches, have drilled rotors? The simple answer is that they’re strong enough that they won’t be a big problem for most drivers on the street, but if you really push them to their limits, they will crack long before straight rotors will. If they are pushed hard, but not to the extreme, you get some pretty interesting wear patterns as well (more on that below).


So where did drilled rotors come from then?
They actually were borne of serious racing, funnily enough. Back in the age of asbestos brake pads (ignorance isn’t always bliss), there was an issue of outgassing with the pads under high heat. Basically the bonding agents in the pad would evaporate and create a thin layer of gas that prevented good contact between the pad and the rotor. The rather rudimentary solution at the time was to just drill a bunch of holes in those suckers and go racing — and that worked pretty well for the time.
The issue is that these days, we no longer use asbestos in our brake pads (no, not even Raybestos pads, despite the name), and with how far material science has advanced in this industry, outgassing is no longer the issue it once was. 


“OK,” you’re saying to me, righteously indignant, “but everyone knows they cool better than straight rotors! That’s why manufacturers still make them!” 
​
Yes, drilled rotors tend to run a little cooler than straight faced rotors, but there are two caveats to that:
  1. The face of the average drilled rotor can have a reduced surface area of 10%-12%, which means overall less area for the pad to grip onto, and less friction applied in total, meaning not as much heat generated. The cooling provided by those holes being there do make a slight difference, however…
  2. Due to those drilled holes catching air, the surface cools unevenly, leading to cracks. The cast iron of your rotors expands and contracts with heat, and the metal around those holes cools faster than the solid surfaces around them. This means that as the rotors cool, they are contracting at different rates around the surface of the rotor. What’s even worse is that the areas of the rotor that experience the biggest heat differentials are also, by design, the narrow spaces between the holes of the rotor, where there is less material to spread the stress out across. 
That’s how you get cracked rotors as seen above. That cooling is a double edged sword that, unfortunately, is sharper on the side facing you in this case. Oh, and that uneven wear pattern I mentioned earlier, check out the rotors on this Porsche I saw at a stoplight just the other day:
Picture
“OK,” you’re saying to me now, still righteous, but a little less indignant, “what about slotted rotors, huh, smart guy?”
Like I mentioned, slotted rotors are in fact found quite often in motorsports, even among serious race teams. There are a few reasons for that, namely the ability to provide runout for water, dust, and other debris (hence their popularity in rally). On top of this, they provide a way to wipe the pad’s surface to help with things like glazing, and to maintain a properly bedded pad and rotor. This is in addition to  more structural rigidity maintained in the rotor (though they will still crack before straight rotors).
Everything is a trade-off, however. The (relatively minor) disadvantages of slotted rotors is that they tend to wear out pads more quickly, and in a daily driver, they can result in some noise when coming to a stop in a quiet car. Depending on the slotting pattern, this can be sort of a growling sound, or with some, under really hard braking, a quick thumping not unlike ABS lockup.


“So then why do all of these brands put drilled rotors on their performance cars rather than plain or slotted rotors?”
Because they look cool (marketing), and because most drivers generally won’t find the limits of those fancy looking drilled rotors — even in their 500+ horsepower speed machines. Doesn’t that just kind of make you sad to know? I wish more people would use the performance they pay so much for.
My last myth comes in two forms:


“What the hell, my new brakes are squeaking! They must be defective,”
​

or

“I just replaced my brakes a few months ago and they’re already warped? They must be defective!”
Picture
As long as you bought your pads from a reputable brand, I can almost guarantee they are not defective or warped. What we have here (for both situations) is that your pads probably weren’t bedded in properly, and a few other factors.


What does it mean to bed-in your brakes?

I’m sure most of you are familiar with this process, but if not: when you buy a set of brake pads, especially higher performance pads, they will come with instructions on or in the box on their specific bed-in procedures. This is a process to “mate” your pads to your rotors with gradually increased heat cycles to create a thin, even film of brake pad material on the surface of your rotor. Let’s get into some detail here:

The brakes on your car work by way of two forms of friction – abrasive and adherent:

Abrasive friction: As the pads are pressed against the spinning rotors, the crystalline structure of the pad and even the cast iron of the disc break down, transferring kinetic energy into heat, slowing you down.

Adherent friction: The material of the pad breaks apart and reforms, bonding to the surface of the rotor. This process saps energy away from the turning of the disc, spending it to create that bond, as well as create heat. This is the method of friction that is used to bed your pads to the rotor.
All modern brake pads use both types of friction, just to varying degrees depending on the application. Semi-metallic pads work through primarily abrasive friction, and therefore are tougher on rotors and create more dust in a trade-off that results in the ability to operate effectively at temperatures. Organic and ceramic pads primarily use aderhent friction, the trade-off being that they’re easier on rotors, have better cold performance, and are quieter at the cost of high temperature performance.


Now that we have this established, how does this pertain to the brake judder you’re feeling in your brakes? 

Well if your rotors have not been bedded in properly, or they were overworked and lost that bedding, then you can have uneven pad deposits on the surface of the rotor. At first, this just means uneven drip across the surface, causing the pads to grip, then slip, then grip, then slip, etc, and that’s the judder you’re feeling as you brake. At the extremes, if this is not corrected, this can result in uneven rotor wear, and a “warped” rotor. I use quotes there, as the term is a bit of a misnomer, though that is a topic for another time (I covered it here years ago).


What about new brakes squealing?
​

The confusion here comes from the fact that most brake pads come with a metal tab that will rub against the surface of your rotor to indicate that your brake pads have worn down to a certain point (as I’m sure you’re familiar with). So now when most people hear their brakes squeal, they think that they already need to be replaced, but that is often not the case. 
What’s happening here is that the conditions are just right for your rotors to vibrate as they pass through the clamping pads, not unlike how a bow being dragged across the strings of a violin work — the main difference is a violin is a lovely sounding instrument, and a squealing brake rotor tends to roar in the key of “ouch.” Not pleasant.
Proper bedding of your rotors can go a long way in reducing this effect, but there are a few other factors that can contribute here. For instance, a layer of rust on your hubs when you install your brake rotors can let them sit against the hubs slightly unevenly, or with some wiggle room, allowing them to vibrate as they turn. Another reason could be your brake pads shifting and allowing play in the contact between the rotor and caliper, allowing the vibration. This can be solved using brake pad shims or some of that brake pad lube they always try to sell you at your local auto parts store. 

Pro tip: A little bit of anti-seize works great, and is cheaper than that stuff they’re trying to get you to buy (assuming you don’t already have some on hand).

Article courtesy of Street Muscle Magazine, written by Garrett Davis.


0 Comments

GM’s First Mid-Engine Corvette: The 1968 Chevrolet Astro II

23/10/2019

0 Comments

 
Picture
The concept of a mid-engine Corvette is almost as old as the Corvette itself. Here’s the General’s first attempt at the driver-first vehicle layout, the 1968 Chevrolet Astro II.
If the press reports to date are any indication, it looks like the 2020 C8 mid-engine Corvette is going to be a winner. Almost universally, the automotive media has applauded its handling, ride, performance, and packaging. In their eyes, the new C8 is everything a Corvette ought to be. Maybe we shouldn’t be surprised by all the thumbs up from the reviewers. After all, General Motors has been kicking around the mid-engined package for future Corvettes for many decades now, so they’ve had plenty of time to get it right. The automaker’s first working prototype was the Chevrolet Astro II way back in 1968, bearing the internal GM designation XP-880.
Picture
​Above, the guy in the blazer is checking out the Astro II’s novel (for 1968, anyway) drivetrain setup: a 427 cubic-inch big-block V8 coupled to a two-speed automatic transaxle borrowed from the 1961-63 Pontiac Tempest—which in turn was based on the Corvair Powerglide, a unit not known for its torque capacity. The body shell is fiberglass, naturally, and everything rides on a Lotus-like backbone chassis of welded steel. Hidden in plain sight along the right side of the engine is a BF Goodrich Space Saver collapsing spare tire. The fuel tank resides on the other side, while the radiator is mounted over and behind the axle, aided by a large grille in the tilt-up bonnet.
First shown to the public at the 1968 New York Auto Show, the Astro II was a mere 43.7 inches tall. We note that for its debut, the show car was not officially badged as a Corvette, a sort-of tradition in Corvette concept vehicles. While the Astro II is widely heralded as the first mid-engine Corvette, it wasn’t the first mid-engine Chevy R&D vehicle; precursors included the CERV I and CERV II test mules and the GSII racer. And yes, there was an Astro I. That name was applied to a futuristic Corvair-based dream car that seems otherwise unrelated to the Astro II.
Picture
​Above, this overhead view of the Astro II’s cockpit illustrates one shortcoming of the backbone frame layout: In this case, there’s scarcely enough lateral space remaining for a driver and passenger. Like the make-do transaxle, the cramped cockpit demonstrates that the mid-engine Corvette was a work in progress. But then, that’s the purpose of concepts and prototypes: to explore all the advantages and pitfalls of various ideas. The new C8 Corvette has been acclaimed as one of the most comfortable mid-engine sports cars ever, so it appears they got that part right.
The rear-quarter view below recalls the Porsche 904 a bit, and shows that Chevrolet experimented with several wheel-and-tire packages over the years. Here, the cast-spoke aluminum wheels usually seen have been exchanged for production-style Chevrolet Rally wheels, caps, and trim rings. In various forms, the Astro II appeared on the cover of Road & Track magazine in July of 1968, Motor Trend in December 1969, and no doubt countless others. And so, with the 2020 C8 Corvette, another tradition comes to an end: magazines perpetually teasing their readers with headlines like “Coming soon—a mid-engine Corvette?” By the way, XP-880 is still around in pristine condition, and is usually on display at the GM Heritage Center in Sterling Heights, Michigan.
Picture
Article courtesy of Mac's Motor City Garage.
0 Comments
<<Previous

    Archives

    December 2019
    November 2019
    October 2019
    September 2019
    August 2019
    July 2019
    June 2019
    May 2019
    April 2019
    March 2019
    February 2019
    January 2019
    December 2018
    October 2018
    September 2018
    June 2018
    May 2018
    April 2018
    March 2018
    February 2018
    January 2018
    December 2017
    November 2017
    October 2017
    September 2017
    August 2017
    July 2017
    June 2017
    May 2017
    April 2017
    March 2017
    February 2017
    January 2017
    December 2016
    November 2016
    October 2016
    September 2016
    August 2016
    July 2016
    June 2016
    May 2016
    April 2016
    March 2016
    February 2016
    January 2016
    December 2015
    October 2015
    September 2015
    August 2015
    July 2015
    June 2015
    May 2015
    April 2015
    March 2015
    January 2015
    December 2014
    November 2014
    October 2014
    September 2014
    July 2014
    June 2014
    April 2014
    March 2014
    February 2014
    December 2013
    November 2013

    Categories

    All
    Classics
    Concepts
    Custom
    Hot Rods
    Interesting Stuff